Quadratic Lagrangians and the Reissner-Nordström-de Sitter Metric

Jarkko A. Leiro

Department of Physical Sciences, University of Turku, 20500 Turku 50, Finland

Received April 21, 1980

The purpose of this note is to point out that the Einstein-Maxwell equations with cosmological constant can be derived from the quadratic Lagrangians R^2 and $F_{\mu\nu}F^{\mu\nu}$. The linear combination $R_{\alpha\beta}R^{\alpha\beta}+\beta R^2+k_2F_{\mu\nu}F^{\mu\nu}$ leads to field equations not satisfied by the Reissner-Nordström-de Sitter metric.

1. INTRODUCTION

As is well known, the Riemann scalar density $R(-g)^{1/2}$ is not invariant with respect to the Weyl gauge group (Stephenson, 1977) whereas the the scalar densities

$$\mathsf{R}^{2}(-g)^{1/2}, \mathsf{R}_{\alpha\beta}\mathsf{R}^{\alpha\beta}(-g)^{1/2}, \qquad \mathsf{R}_{\alpha\beta\gamma\eta}\mathsf{R}^{\alpha\beta\gamma\eta}(-g)^{1/2},$$

and $\mathsf{F}_{\mu\nu}\mathsf{F}^{\mu\nu}(-g)^{1/2}$ (1.1)

are. $\mathsf{R}^{\alpha}_{\beta\gamma\eta}$ is a Riemann tensor and $\mathsf{F}_{\mu\nu}$ is an electromagnetic field tensor. The metric tensor has the determinant det $|g_{\alpha\beta}|$. It has been shown that the first three scalar densities in (1.1) are interrelated because the following Hamiltonian derivatives vanish identically (Bach, 1921):

$$\frac{\partial}{\partial g^{\rho\sigma}} \left(\mathsf{R}^2 - 4\mathsf{R}_{\alpha\beta}\mathsf{R}^{\alpha\beta} + \mathsf{R}_{\alpha\beta\gamma\eta}\mathsf{R}^{\alpha\beta\gamma\eta} \right) = 0 \tag{1.2}$$

2. THE LAGRANGIANS R^2 AND $F_{\mu\nu}F^{\mu\nu}$

As a first case we consider the action integral

$$W = \int (R^2 + k_0 F_{\mu\nu} F^{\mu\nu}) (-g)^{1/2} dx^4 \qquad (2.1)$$

^{0020-7748/80/1200-0873\$03.00/0 © 1980} Plenum Publishing Corporation

where k_0 is a constant. The variations $\delta g^{\alpha\sigma}$ give the field equations (Wynne and Derrick, 1973, Eddington, 1924)

$$2g_{\rho\sigma}g^{\alpha\sigma}\mathsf{R}_{;\alpha\tau}-\mathsf{R}_{;\rho\sigma}-\mathsf{R}_{;\sigma\rho}+\frac{1}{2}g_{\rho\sigma}\mathsf{R}^{2}-2\mathsf{R}\mathsf{R}_{\rho\sigma}$$
$$+2k_{0}\left(-\frac{1}{4}g_{\rho\sigma}\mathsf{F}^{\alpha\tau}\mathsf{F}_{\alpha\tau}+\mathsf{F}^{\mu}_{\sigma}\mathsf{F}_{\mu\rho}\right)=0 \qquad (2.2)$$

The covariant derivatives are indicated by a semicolon subscript. The electromagnetic energy-momentum tensor is now

$$\mathsf{T}_{\rho\sigma}^{(EM)} = \frac{1}{2} g_{\rho\sigma} \mathsf{F}^{\alpha\tau} \mathsf{F}_{\alpha\tau} - \mathsf{F}^{\mu}{}_{\sigma} \mathsf{F}_{\mu\rho} \tag{2.3}$$

The trace $T_{\sigma}^{\sigma}(EM)$ is identically zero. We then obtain from (2.2)

$$6g^{\alpha\tau}\mathsf{R}_{;\,\alpha\tau}=0\tag{2.4}$$

Assuming the curvature invariant to be constant $R=4\Lambda\neq 0$ (Buchdahl, 1962; Bicknell, 1974) where Λ is the cosmological constant, (2.2) takes the form

$$4\Lambda (2g_{\rho\sigma}\Lambda - 2\mathsf{R}_{\rho\sigma}) - 2k_0\mathsf{T}_{\rho\sigma}{}^{(EM)} = 0$$
(2.5)

Let us set $k_0 = 32\pi\Lambda$. This leads to Einstein's field equations with the cosmological constant

$$\mathsf{R}_{\rho\sigma} - \Lambda g_{\rho\sigma} = -8\pi \mathsf{T}_{\rho\sigma}^{(EM)} \tag{2.6}$$

In a region free from charged particles the variations with respect to the four-potentials implicitly included in (2.1) give the Maxwell equations

$$\frac{\partial}{\partial x^{\nu}} \left[\mathsf{F}^{\mu\nu} (-g)^{1/2} \right] = 0 \tag{2.7}$$

where

$$\mathsf{F}^{\mu\nu} = \frac{\partial}{\partial x^{\nu}} \mathsf{A}^{\mu} - \frac{\partial}{\partial x^{\mu}} \mathsf{A}^{\nu}$$

is a Maxwell's tensor, which in turn satisfies

$$\frac{\partial}{\partial x^{\sigma}}\mathsf{F}_{\mu\nu} + \frac{\partial}{\partial x^{\mu}}\mathsf{F}_{\nu\sigma} + \frac{\partial}{\partial x^{\nu}}\mathsf{F}_{\sigma\mu} = 0$$
(2.8)

It is well known that the Reissner-Nordström-de Sitter metric (Lake, 1979)

$$ds^{2} = -\left(1 - \frac{2m}{r} + \frac{4\pi Q^{2}}{r^{2}} - \frac{\Lambda}{3}r^{2}\right)^{-1} dr^{2} - r^{2} d\theta^{2} - r^{2} \sin^{2} \theta d\phi^{2} + \left(1 - \frac{2m}{r} + \frac{4\pi Q^{2}}{r^{2}} - \frac{\Lambda}{3}r^{2}\right) dt^{2}$$
(2.9)

is a special solution of (2.6), where m is the mass and Q the charge of the body.

3. THE OTHER LAGRANGIANS

Let us consider another case. The Euler-Lagrange equations corresponding to the quadratic Lagrangian $R_{\alpha\beta}R^{\alpha\beta} + k_1F_{\mu\nu}F^{\mu\nu}$ are

$$\overline{\mathsf{G}}_{\rho\sigma} = g_{\rho\sigma} \mathsf{R}^{\alpha\tau}_{; \alpha\tau} + g^{\alpha\tau} \mathsf{R}_{\rho\sigma; \alpha\tau} - \mathsf{R}^{\alpha}_{\sigma; \rho\alpha} - \mathsf{R}^{\alpha}_{\rho; \sigma\alpha} + \frac{1}{2} g_{\rho\sigma} \mathsf{R}_{\alpha\tau} \mathsf{R}^{\alpha\tau} - 2\mathsf{R}_{\alpha\rho} \mathsf{R}^{\alpha}_{\sigma} + 2k_1 \left(-\frac{1}{4} g_{\rho\sigma} \mathsf{F}^{\alpha\tau} \mathsf{F}_{\alpha\tau} + \mathsf{F}^{\mu}_{\sigma} \mathsf{F}_{\mu\rho} \right) = 0$$
(3.1)

As before, the trace vanishes:

$$2g^{\alpha\tau}\mathsf{R}_{;\,\alpha\tau} = 2k_1\mathsf{T}^{\sigma}{}_{\sigma}{}^{(EM)} = 0 \tag{3.2}$$

Let us suppose a spherically symmetric, static metric of the form

$$ds^{2} = -\gamma^{-1} dr^{2} - r^{2} d\theta^{2} - r^{2} \sin^{2} \theta d\phi^{2} + \gamma dt^{2}$$
(3.3)

where $\gamma = (1 + a/r + b/r^2 + cr^2)$ includes the constants *a*, *b*, and *c*. Multiplying (3.1) by g^{19} and substituting the metric (3.3) in (3.1) we find¹

$$\overline{G}_{1}^{1} = \frac{\gamma^{2}}{4} \left[\frac{2\nu'}{r} (-\nu'' - \nu'^{2}) + \frac{8\nu''}{r^{2}} + \frac{12\nu'}{r^{3}} \right] + \gamma \frac{\nu'}{r^{3}} - 36c^{2} + \frac{18\gamma}{r}\nu'c - \frac{12c}{r^{2}} - k_{1}\frac{Q^{2}}{r^{4}} = 0$$
(3.4)

with $\nu = \ln \gamma$ and $c = -\Lambda/3 \neq 0$ for $\mathbf{R} = 4\Lambda$.

 ${}^{1}\nu'$ denotes $(d/dr)\ln\gamma$ and so on.

Leiro

Now, the equation (3.4) becomes

$$\overline{\mathsf{G}}_{1}^{1} = \frac{4b^{2}}{r^{8}} + \frac{4ab}{r^{7}} + \frac{4b}{r^{6}} - \frac{8bc}{r^{4}} - k_{1}\frac{Q^{2}}{r^{4}} = 0 \tag{3.5}$$

This shows that $b = -k_1Q^2/8c = 0$. Consequently, the Reissner-Nordströmde Sitter metric does not satisfy (3.1).

We can see from (1.2) that the field equation corresponding to the quadratic Lagrangian

$$\mathsf{L}_{1} = \mathsf{R}_{\alpha\beta\gamma\eta} \mathsf{R}^{\alpha\beta\gamma\eta} \tag{3.6}$$

may be written as a special case of the linear combination

$$L_2 = R_{\alpha\beta}R^{\alpha\beta} + \beta R^2 \tag{3.7}$$

if $\beta = -\frac{1}{4}$. It is therefore sufficient to consider the Lagrangian

$$L_3 = R_{\alpha\beta}R^{\alpha\beta} + \beta R^2 + k_2 F_{\mu\nu}F^{\mu\nu}$$
(3.8)

Obviously, this Lagrangian does not have the Reissner-Nordströmde Sitter metric as a solution.

ACKNOWLEDGMENTS

The author is grateful to Professor K. Mansikka and Professor E. Suoninen for reading the manuscript.

REFERENCES

Bach, R. (1921). Mathematische Zeitschrift, 9, 110.

- Bicknell, G. V. (1974). Journal of Physics A, 7, 1061.
- Buchdahl, H. A. (1962). Nuovo Cimento, 23, 141.
- Eddington, A. S. (1924). The Mathematical Theory of Relativity, Cambridge University Press, London.
- Lake, Kayll, (1979). Physical Review D, 19, 421.
- Stephenson, G. (1977). Journal of Physics A, 10, 181.
- Wynne, W. A., and Derrick, G. H. (1973). Nuovo Cimento, 15B, 181.

876